
 86

9. Mr. Jeff Rish, Code R23 .. 1
 NSWCDD CSS

6703 West Highway 98
Panama City, FL 32407-7001

10. Dr. T. Swean ... 1
 Office of Naval Research
 800 N. Quincy St.
 Arlington, VA 22217-5660

 85

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center.. 2

8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library ... 2
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. Professor Anthony J. Healey, Code ME/He.. 2
Naval Postgraduate School
700 Dyer Road

 Monterey, California 93943-5101

4. Mechanical Engineering Department Chairman, Code ME.................................... 1
Naval Postgraduate School
700 Dyer Road

 Monterey, California 93943-5101

5. Engineering & Technology Curricular Office, Code 34... 1
Naval Postgraduate School
700 Dyer Road

 Monterey, California 93943-5101

6. LT Peter M. Ludwig .. 1
674 Paden Drive
Birmingham, Alabama 35226

7. LT Peter M. Ludwig .. 2
SRF DET SASEBO
PSC 476 Box 16

 FPO AP 96322-1400

8. Mr. Leolan H. Fry, Code R23 .. 1
 NSWCDD CSS

6703 West Highway 98
Panama City, FL 32407-7001

 84

THIS PAGE INTENTIONALLY LEFT BLANK

 83

LIST OF REFERENCES

Crute, Daniel A., “Naval Mine Warfare Vision 2010: A View Toward the Future”
[http://www.ncsc.navy.mil/CSS/Papers/vison.htm]. May 2000.

Fry, Leolan H. Jr., Coastal Systems Station, Panama City, FL, e-mail letter to Anthony J.
Healey , Subject: Comments to swimmer sweep draft report, 31 Jan 2000.

Healey, A.J., Kim, J., "Multiple Autonomous Vehicle Solutions to Minefield
Reconnaissance and Mapping" Proceedings of Australian-American Joint Conference on
the Technologies of Mines and Mine Countermeasures, Sydney, Australia, July 12-16,
1999.

Kim, Joung K., “Magsweep_rpt,” draft report presented to Professor Anthony J. Healey,
Naval Postgraduate School, Monterey, California, January 2000.

Koopman, Bernard O., Search and Screening: general principles with historical
applications, Pergamon Press, 1980.

Stone, J.A., Theory of Optimal Search, Academic Press, 1975.

 82

The average searched area in iteration 100 is: 98.53%
The number of swimmers destroyed in iteration 100 is: 11
 11 targets of 11 cleared in 7866 steps

The average percent of cleared targets over all iterations is: 99.545%
The average searched space over all iterations is: 98.86%

Program Output:
 In the process of running the simulation, the program generates several output files
to which it writes data. The number of vehicles initially assigned to the simulation will
replace any xxx seen in the file names. These files are used for data display and analysis.
The most significant of these files are:

x.out contains one column for every vehicle and records the vehicle’s x
geographical position.

y.out contains one column for every vehicle and records the vehicle’s y

geographical position.

 pvacrxxx.rst, which contains seven columns and one, row for every iteration, plus
a final row for the average values. The columns are allocated as shown in the below
figure.

Iteration
number

Number of
mines in
the run

Number of
mines

cleared

Percent of
mines

cleared

Percent
area

searched

Number of
swimmer
vehicles

used

Number of
dead

swimmers

Figure C.1 Columns for output file pvacrxxx.rst

fldvaxxx.rst contains the data needed to graphically display the areas that were left
un-searched during the simulation (holidays).

target.out holds the data on the mines, including their geographical positions.

 81

The vehicle characteristics for this simulation are:
 Speed is: 2.572222 m/sec
 Sensor range is: 4.267200 m
 GPS error is: 2.000000 m
 Charge time is: 15 sec

The spacing between vehicles is 2.133600 m.
 percent overlap is: 100.00%

Is this the desired overlap? (y or n)
n

Enter the desired vehicle interval: (in meters)
2.5

The spacing between vehicles is 2.500000 m.
 percent overlap is: 70.69%

Is this the desired overlap? (y or n)
y

The delay time between vehicles starting is: 35 sec

Input the number of seconds you want to run the simulation for.
The maximum time the program will run is 21600 seconds.
An input value of zero will default the simulation to maximum.
7200

The subsequent output at the conclusion of the simulation would appear like:

 vehs = 19

vehs id = 0
fleet = 1
vehs[i].pnew[X] = 53.500000
vehs[i].pnew[Y] = 0.000000
vehs[i].dgps[X] = 52.937389
vehs[i].dgps[Y] = 1.117366
vehs[i].speed = 2.572222
vehs[i].hm_fl = 0
vehs[i].clock = -350
vehs[i].band_wd = 25.000000

 80

After each iteration is completed, the program displays the iteration statistics as follows:

 The average searched area in iteration <iteration #> is:<% searched>%

The number of swimmers destroyed in iteration <iteration #> is:<# killed>
<mines destroyed> targets of <total mines> cleared in <# steps> steps

Subsequently, after all iterations are run, the program averages all results and displays:

 The average percent of cleared targets over all iterations is:<%cleared>%

The average searched space over all iterations is:<avrg % searched>%

Example:

 Table A.1 below contains sample parameters for a simulation.

of
Vehicles

of
Iterations

Vehicle
Speed

Sensor
Width

Vehicle
Spacing

%
Overlap

Simulation
Time

20 100 5 KTS
4.2672 m

(14 ft)
2.5 m

(8.202 ft)
70.69 % 7200 sec

Table A.1 Example Simulation Parameters

Using the above-tabulated parameters, the entire sequence for program
initialization would appear as follows :

fry31_final_rev 20 100

The number of vehicles for this simulation is: 20
The number of iterations for this simulation is: 100

Input the desired vehicle speed: (in knots)
5

Input the desired sensor range of the vehicle: (in meters)
4.2672

The simulation field is:
 150.88 m by 2764.84 m

 79

Next, the user will be prompted to verify if the default values for vehicle spacing and
overlap as just shown are the desired values:

Is this the desired overlap? (y or n)
<y or n>

An answer of no will initiate the following additional questions:

 Enter the desired vehicle interval: (in meters)

<vehicle spacing>

The spacing between vehicles is <vehicle spacing> m.
 percent overlap is: <calculated value>%

Is this the desired overlap? (y or n)
 <y or n>

At this point, an additional answer of no will re-initiate the above sequence until an answer
of yes is received. When the user accepts the overlap value, the program displays the
delay time between vehicle starts and prompts for the simulation run time in the following
sequence:

The delay time between vehicles starting is: <calculated> sec

Input the number of seconds you want to run the simulation for.
The maximum time the program will run is 21600 seconds.
An input value of zero will default the simulation to maximum.
<simulation time>

As soon as the program receives the time input, it commences the simulation. As in the
below example, for each vehicle in every iteration, the following information is displayed:

 vehs = 19

vehs id = 0
fleet = 1
vehs[i].pnew[X] = 53.500000
vehs[i].pnew[Y] = 0.000000
vehs[i].dgps[X] = 54.283245
vehs[i].dgps[Y] = -0.557471
vehs[i].speed = 3.601111
vehs[i].hm_fl = 0
vehs[i].clock = -290
vehs[i].band_wd = 25.000000

 78

Users Guide

Note:

For the purposes of this guide, the program name fry31_final_rev is used when
required. Any name assigned during the compilation process may be substituted.

Running the Program:

 The program is designed to be fairly user friendly, provided the user has
knowledge of the subject matter and is familiar with the terminology used. To initially
start running the program, at the command prompt, type:

fry31_final_rev <# of Vehicles> <# of Iterations>

So that the arguments may be verified, the program then prints the following verification
statements to the screen and additionally prompts for the desired vehicle speed of the
simulation:

The number of vehicles for this simulation is: <# of Vehicles>
The number of iterations for this simulation is: <# of Iterations>

Input the desired vehicle speed: (in knots)
<vehicle speed>

The program then prompts for the desired vehicle swath width to be input:

Input the desired sensor range of the vehicle: (in meters)
<sensor width>

After receiving the required input, the following data is printed to the screen:

The simulation field is:
150.88 m by 2764.84 m

The vehicle characteristics for this simulation are:
Speed is: <vehicle speed> m/sec
Sensor range is: <sensor width> m
GPS error is: 2.000000 m
Charge time is: 15 sec

The spacing between vehicles is <1/2 sensor width> m.
percent overlap is: 100.00%

 77

APPENDIX C. USERS GUIDE TO THE PROGRAM

This appendix is intended to be utilized as a users guide to the compiled program.

The basis for this guide was taken from a similar guide by Kim (2000) and included in the

draft report generated after initially programming the file. It is intended to help step a user

through the actual workings of the program and be a supplement to the material contained

in the actual thesis, as a fundamental knowledge of the programs backbone is required in

order to obtain desired results.

 76

THIS PAGE INTENTIONALLY LEFT BLANK

 75

reallocation.m

% This m-file is specific for use with the x.out and y.out files contained in the folder
% labeled new_dx. It is used to plot the paths of two specific vehicles chosen to show
% track re-allocation techniques. It can be modified for use with other files by altering the
% numbers of the vehicles chosen and adjusting the axis sizes to accommodate the desired
% viewing range.

load x.out;
load y.out;
[rows,columns]=size(x);

figure
hold on
plot(x(:,9),y(:,9),'r.-')
plot(x(:,10),y(:,10),'b.-')
axis([70 150 -250 3500])
grid
t=['PATHS FOR VEHICLES #9 & 10'];
title(t)
legend('vehicle 9','vehicle 10')

figure
hold on
plot(x(:,9),y(:,9),'r.-')
plot(x(:,10),y(:,10),'b.-')
axis([70 115 -100 3000])
grid
title(t)
legend('vehicle 9','vehicle 10')

 74

graphs.m

% This m-file is a generic file used to plot the output data from the files x.out and y.out
% generated by the program fry31_rev_final.c. It is designed to plot the results for any
% number of vehicles chosen for simulation.

load x.out;
load y.out;
[rows,columns]=size(x);

plot(x,y)
axis([-5 170 -250 3000])
grid
t1=['ALL VEHICLE PATHS DISPLAYED, ', num2str(columns), 'VEHICLES'];
title(t1)

for n=1:columns
 figure
 plot(x(:,n),y(:,n),'r.')
 axis([-5 170 -250 3000])
 grid
 t2=['PATH FOR VEHICLE #', num2str(n),' turn time=1'];
 title(t2)
end

 73

APPENDIX B. MATLAB FILES FOR GRAPHICAL DATA DISPLAY

This appendix contains the Matlab files utilized to generate graphical displays of

the output data from the files x.out and y.out generated during the simulations.

 72

 tgt[i].atr = 1;
 tgt[i].sch_flg = 0;
 Line[X] += 50.0;
 i++;
 }

 /* Place targets on the Mine field # 2 */

 Line[Y] = max_Y_length - 2304 * FT;
 Line[X] = 20.0 * (rderr() + 3.0) / 6.0;

 while (Line[X] <= max_X_length)
 {
 tgt[i].pos[X] = Line[X] + pos_err();
 tgt[i].pos[Y] = Line[Y] + pos_err();
 tgt[i].atr = 2;
 tgt[i].sch_flg = 0;
 Line[X] += 20.0;
 i++;
 }

 no_target = i;

 inptr = fopen("target.out","w");
 for (i=0; i<no_target; i++) {
 fprintf(inptr, "%10.5f %10.5f ", tgt[i].pos[X], tgt[i].pos[Y]);
 fprintf(inptr, "%3d %3d \n", tgt[i].atr, tgt[i].sch_flg);
 }
 fclose(inptr);
}

 71

 vehs[v].dest[X] = Dx;
 }
 }
 vehs[v].gwp_flg = 0;
 break;
 }
}

float pos_err()
{
/* Compute the Target position error */

 return(rderr() * tg_pos_err / 3.0);

}

void init_target()
/*-- */
/* Function: init_target */
/* Parameters: */
/* set the initial target position */
/*-- */
{
 int i;
 float FT, Line[XY];

 FILE *inptr;
/* */
/* Initialize the targets position */
/* */

 FT = 0.3048;

 /* Place targets on the minefield #1 */

 Line[Y] = max_Y_length - 4956.0 * FT;
 Line[X] = 50.0 * (rderr() + 3.0) / 6.0;

 i = 0;

 while (Line[X] <= max_X_length)
 {
 tgt[i].pos[X] = Line[X] + pos_err();
 tgt[i].pos[Y] = Line[Y] + pos_err();

 70

 vehs[v].dest[X] = max_X_length - dif;
 vehs[v].flag = 1;
 }
 else {
 vehs[v].dest[X] = Dx;
 }
 }
 }
 vehs[v].gwp_flg = 0;
 break;
 case 2:
 vehs[v].gwp_flg = 1;
 vehs[v].dest[Y] = 0.0;
 break;
 default:
 if (vehs[v].flag) {
 Dx = vehs[v].id * vh_int;
 if (zn) {
 vehs[v].dest[X] += Dx;
 vehs[v].dir = 0;
 }
 else {
 vehs[v].dest[X] -= Dx;
 vehs[v].dir = 1;
 }
 vehs[v].flag = 0;
 }
 else {
 if (zn) {
 Dx = vehs[v].dest[X] - vehs[v].band_wd;
 if ((Dx - dif) <= 0.0) {
 vehs[v].dest[X] = dif;
 vehs[v].flag = 1;
 }
 else
 vehs[v].dest[X] = Dx;
 }
 else {
 Dx = vehs[v].dest[X] + vehs[v].band_wd;
 if ((Dx + dif) >= max_X_length) {
 vehs[v].dest[X] = max_X_length - dif;
 vehs[v].flag = 1;
 }
 else

 69

 }
 vehs[v].msg_idx = k;
 }
 else
 vehs[v].msg_idx = 0;
 }

 jd = vehs[v].turn % 4;

 idx = vehs[v].id;
 dif = (idx + 1) * vh_int;

 switch (jd) {
 case 0:
 vehs[v].gwp_flg = 1;
 vehs[v].dest[Y] = max_Y_length;
 break;
 case 1:
 if (vehs[v].flag) {
 Dx = vehs[v].id * vh_int;
 if (zn) {
 vehs[v].dest[X] += Dx;
 vehs[v].dir = 0;
 }
 else {
 vehs[v].dest[X] -= Dx;
 vehs[v].dir = 1;
 }
 vehs[v].flag = 0;
 }
 else {
 if (zn) {
 Dx = vehs[v].dest[X] - vehs[v].band_wd;
 if ((Dx - dif) <= 0.0) {
 vehs[v].dest[X] = dif;
 vehs[v].flag = 1;
 }
 else {
 vehs[v].dest[X] = Dx;
 }
 }
 else {
 Dx = vehs[v].dest[X] + vehs[v].band_wd;
 if ((Dx + dif) >= max_X_length) {

 68

 vehs[v].turn++;
 }

 return(flg);
}

void get_newGWP(int v)
{
/* */
/* Compute a new Global Way Point for the vehicle */
/* */
 int jd, zn, idx;
 float Dx, Dy, dif;
 int i, k;
 struct com_buf tmp[5];

 zn = vehs[v].dir;

 if (vehs[v].msg_idx > 0) {
 k = 0;
 for (i=0; i<vehs[v].msg_idx; i++) {
 if (vehs[v].msg[i].trn == vehs[v].turn) {
 vehs[v].id--;
 vehs[v].band_wd -= vh_int;
 /*
 if (zn)
 vehs[v].dest[X] += vh_int;
 else
 vehs[v].dest[X] -= vh_int;
 */
 }
 else {
 tmp[k].flt = vehs[v].msg[i].flt;
 tmp[k].ids = vehs[v].msg[i].ids;
 tmp[k].trn = vehs[v].msg[i].trn;
 k++;
 }
 }
 if (k > 0) {
 for (i=0; i<k; i++) {
 vehs[v].msg[i].flt = tmp[i].flt;
 vehs[v].msg[i].ids = tmp[i].ids;
 vehs[v].msg[i].trn = tmp[i].trn;

 67

 yp = vehs[v].dgps[Y];
 Dx = vehs[v].dest[X];
 Dy = vehs[v].dest[Y];
 flg = 0;
 tol = 1.0;

 jd = vehs[v].turn % 4;
 zn = vehs[v].dir;
 switch (jd) {
 case 0:
 if (yp+tol >= Dy) {
 flg = 1;
 }
 break;
 case 1:
 if (zn) {
 if (xp-tol <= Dx)
 flg = 1;
 }
 else {
 if (xp+tol >= Dx)
 flg = 1;
 }

 break;
 case 2:
 if (yp-tol <= Dy) {
 flg = 1;
 }
 break;
 default:
 if (zn) {
 if (xp-tol <= Dx)
 flg = 1;
 }
 else {
 if (xp+tol >= Dx)
 flg = 1;
 }

 break;
 }

 if (flg) {

 66

/* */
/* Compute the direction from the vehicles position to the target */
/* */
 float ang;
 float gpsx, gpsy, tmpy;
 float A, B;

 gpsx = vehs[v].dest[X];
 if (vehs[v].gwp_flg) {
 tmpy = 50.0;
 if (vehs[v].gwp_flg <= 5)
 vehs[v].gwp_flg++;
 else
 vehs[v].gwp_flg = 0;
 if ((vehs[v].turn % 4) == 0)
 gpsy = vehs[v].dgps[Y] + tmpy;
 else
 gpsy = vehs[v].dgps[Y] - tmpy;
 }
 else {
 gpsy = vehs[v].dest[Y];
 }

 A = gpsy - vehs[v].dgps[Y];
 B = gpsx - vehs[v].dgps[X];
 ang = atan2f(A, B);
 vehs[v].A0 = A;
 vehs[v].B0 = B;
 if (ang < 0.0)
 vehs[v].psi = ang + twopi;
 else
 vehs[v].psi = ang;
}

int chk_bnd_area(int v)
{
/* Check boundary area */
 float xp, yp;
 int flg, jd, zn;
 float Dx, Dy;
 float tol;

 xp = vehs[v].dgps[X];

 65

 ch[7] = ch[7] + x;
 else if (x < 100) {
 dv = div(x,10);
 ch[6] = ch[6] + dv.quot;
 ch[7] = ch[7] + dv.rem;
 }
 else {
 dv = div(x,100);
 ch[5] = ch[5] + dv.quot;
 y = dv.rem;
 dv = div(y,10);
 ch[6] = ch[6] + dv.quot;
 ch[7] = ch[7] + dv.rem;
 }

 tsum = 0.0;
 wsum = 0.0;
 vsum = 0;
 inptr = fopen(ch,"w");
 for (j=0;j<ittr ;j++) {
 fprintf(inptr, "%5d %5d %5d", j+1, nv[j], tcl[j]);
 tmp = ((float)tcl[j]) / nv[j] * 100.0;
 tsum += tmp;
 vsum += ttm[j];
 tmp1 = *(av_map+j);
 wsum += tmp1;
 fprintf(inptr, "%7.2f %7.2f %5d %5d\n", tmp, tmp1, no_veh, ttm[j]);
 }

 tsum /= ittr;
 wsum /= ittr;

 fprintf(inptr, "%5d %5d %5d", 0, 0, 0);
 fprintf(inptr, "%7.2f %7.2f %5d %8.2f\n", tsum, wsum, 0,

(float)vsum/ittr);
 fclose(inptr);

 printf("The average searched space over all iterations is: %8.2f%%\% \n",

wsum);
 printf("\n");
}

void veh_dir(int v)
{

 64

 FILE *inptr;

 strcpy(ch, "fldva000.rst");
 x = no_veh;

 if (x < 10)
 ch[7] = ch[7] + x;
 else if (x < 100) {
 dv = div(x,10);
 ch[6] = ch[6] + dv.quot;
 ch[7] = ch[7] + dv.rem;
 }
 else {
 dv = div(x,100);
 ch[5] = ch[5] + dv.quot;
 y = dv.rem;
 dv = div(y,10);
 ch[6] = ch[6] + dv.quot;
 ch[7] = ch[7] + dv.rem;
 }

 inptr = fopen(ch,"w");
 for (j=0; j<=field_y; j++) {
 for (i=0; i<=field_x; i++) {
 fprintf(inptr, "%3d", field[i][j]);
 }
 fprintf(inptr, "\n");
 }
}

void wr_cl_dt(int *nv, int *ttm, int *tcl, float *av_map, int ittr)
{
 div_t dv;
 char ch[13];
 int j, x, y, vsum;
 float tmp, tmp1, tsum, wsum;

 FILE *inptr;

 strcpy(ch, "pvacr000.rst");
 x = no_veh;

 if (x < 10)

 63

{
 div_t dv;
 char ch[13];
 int j, x, y;
 float tmp, tmp1;

 FILE *inptr;

 strcpy(ch, "panva000.rst");
 x = no_veh;

 if (x < 10)
 ch[7] = ch[7] + x;
 else if (x < 100) {
 dv = div(x,10);
 ch[6] = ch[6] + dv.quot;
 ch[7] = ch[7] + dv.rem;
 }
 else {
 dv = div(x,100);
 ch[5] = ch[5] + dv.quot;
 y = dv.rem;
 dv = div(y,10);
 ch[6] = ch[6] + dv.quot;
 ch[7] = ch[7] + dv.rem;
 }

 inptr = fopen(ch,"w");
 for (j=0;j<=cltb_ix ;j++) {
 tmp = ((float) cleartb[j]) / ((float) size);
 fprintf(inptr, "%10.2f \n", tmp);
 }
 fclose(inptr);
}

void wr_field()
/* */
/* print the map of the field */
/* */
{
 int i, j, x, y;
 div_t dv;
 char ch[13];

 62

 fac = sqrtf(-2.0*log(r)/r);

 iset = 1;
 gset = v1*fac;
 return (v2*fac);
 }
 else
 {
 iset = 0;
 return (gset);
 }
}

void wr_xy(void)
{
 int v;

 for (v=0; v<no_veh; v++)
 fprintf(outfx, "%12.3f", vehs[v].pnew[X]);
 fprintf(outfx, "\n");

 for (v=0; v<no_veh; v++)
 fprintf(outfy, "%12.3f", vehs[v].pnew[Y]);
 fprintf(outfy, "\n");
}

float avrg(int tm[], int nt[], int size)
{
 /* Compute the mean value of a list */

 int j;
 float sum, tmp;

 sum = 0.0;
 for (j=0; j<size; j++) {
 tmp = ((float) tm[j]) / ((float) nt[j]);
 sum += tmp;
 }

 return(sum / ((float) size)*100.0);
}

void wr_av_cl(int size)

 61

{
/*-- */
/* Function: gps_vh_err*/
/* Parameters: */
/* Returns: value |vehicle DGPS error| <= 1.0 */
/*-- */

 return(rderr() * gps_err / 3.0);
}

float rderr()
/*-- */
/* Returns: value |vehicle DGPS error| <= 3.0 */
/*-- */
{
 float err;
 do {
 err = randn();
 } while (fabsf(err) > 3.0);
 return(err);
}

float randn()
/*-- */
/* Function: randn */
/* Summary: taken from gasdev() in Numerical Recipes in C */
/* Parameters: */
/* Returns: gauss distributed random value */
/*-- */
{
 static int iset = 0;
 static float gset;

 float fac,r,v1,v2;

 if (!iset)
 {
 do
 {
 v1 = 2.0*(float) drand48() - 1.0;
 v2 = 2.0*(float) drand48() - 1.0;
 r = v1*v1 + v2*v2;
 } while ((r >= 1.0) || (r == 0.0));

 60

 vy = vehs[j].pnew[Y];
 if ((vx >= tmx) && (vx <= tpx) && (vy >= tmy) && (vy <=

tpy)) {
 tmp = (vx - tx) * (vx - tx) + (vy - ty) * (vy - ty);
 dst = sqrtf(tmp);
 if (dst <= rang) {
 vehs[j].hm_fl = 3;
 no_alive--;
 no_destroy++;
 msgtosup(j);
 }
 }
 }
 }
 }
}

void msgtosup(int v)
{
/* Sends a message to the supervisor */
 int i;

 i = sup.idx;

 sup.buf[i].flt = vehs[v].fleet;
 sup.buf[i].ids = vehs[v].id;
 sup.buf[i].trn = vehs[v].turn;

 sup.idx++;
}

void move_bugs(int v)
{
 float dx, dy;

 dx = vehs[v].speed * cos(vehs[v].psi);
 dy = vehs[v].speed * sin(vehs[v].psi);
 vehs[v].pnew[X] += dx;
 vehs[v].pnew[Y] += dy;
 vehs[v].dgps[X] = vehs[v].pnew[X] + vh_err();
 vehs[v].dgps[Y] = vehs[v].pnew[Y] + vh_err();
}

float vh_err()

 59

 }
 }
 }

 *ly = y[1];
 *uy = y[2];
}

void dead_veh(int v)
/* */
/* The vehicle either exploded or the battery ran out */
/* */
{
 int i, j;
 float tx, ty, tmx, tpx, tmy, tpy;
 float vx, vy, tmp, dst, rang;

 vehs[v].hm_fl = 3;
 no_alive--;
 no_cleared++;
 no_destroy++;
 msgtosup(v);

 i = vehs[v].explo;

 if (tgt[i].atr > 0) {
 tgt[i].sch_flg = 1;
 tx = tgt[i].pos[X];
 ty = tgt[i].pos[Y];

 if (tgt[i].atr == 1)
 rang = 50.0;
 else
 rang = 20.0;

 tmx = tx - rang;
 tpx = tx + rang;
 tmy = ty - rang;
 tpy = ty + rang;

 for (j=0; j<no_veh; j++) {
 if (vehs[j].hm_fl != 3) {
 vx = vehs[j].pnew[X];

 58

 return(idx);
}

void intersect(float *PA, float *PB, float *PC, float xx, float *ly, float *uy)
/* */
/* Find two intersect points at xx */
/* Return y values */
/* */
{
 float a[4], y[4], inf, eps;
 int i, flg;
 int out, in;
 float tmp;

 inf = 1.0e10;
 eps = 1.0e-6;

 for (i=0; i<4; i++) {
 a[i] = - *(PA + i) * xx - *(PC + i);
 }

 flg = 1;
 for (i=0; i<4; i++) {
 if (fabsf(*(PB+i)) < eps) {
 if (flg) {
 y[i] = -inf;
 flg = 0;
 }
 else
 y[i] = inf;
 }
 else
 y[i] = a[i] / *(PB+i);
 }

 for (out=0; out<3; out++) {
 for (in=out+1; in<4; in++) {
 if (y[out] > y[in])
 {
 tmp = y[in];
 y[in] = y[out];
 y[out] = tmp;

 57

 minx = P[i][X];
 if (P[i][X] > maxx)
 maxx = P[i][X];
 if (P[i][Y] < miny)
 miny = P[i][Y];
 if (P[i][Y] > maxy)
 maxy = P[i][Y];
 }

 for (i=0; i<no_target; i++) {
 if (tgt[i].sch_flg)
 continue;
 px = tgt[i].pos[X];
 py = tgt[i].pos[Y];
 if ((px >= minx) && (px <= maxx) && (py >= miny) && (py <= maxy))

{
 intersect(A, B, C, px, &ity1, &ity2);
 if ((py >= ity1) && (py <= ity2)) {
 idx = i;
 break;
 }
 }
 }

 /* Mark searched field */

 lx = minx + 1;
 if (lx < 0) lx = 0;
 ux = maxx;
 if (ux > field_x) ux = field_x;

 for (i=lx; i<=ux; i++) {
 px = (float)i;
 intersect(A, B, C, px, &ity1, &ity2);
 ly = ity1 + 1;
 if (ly < 0) ly = 0;
 uy = ity2;
 if (uy > field_y) uy = field_y;

 for (j=ly; j<=uy; j++) {
 if (!(field[i][j]))
 field[i][j] = 1;
 }
 }

 56

int srh_tg(int v)
{
 int idx, i, j;
 int lx, ux, ly, uy;
 float A[4], B[4], C[4], P[4][XY];
 float x0, y0;
 float dx, dy, thc, ths, x1, y1;
 float ity1, ity2, px, py;
 float minx, maxx, miny, maxy;

 idx = -1;

 thc = cos(vehs[v].psi);
 ths = sin(vehs[v].psi);
 x0 = vehs[v].pnew[X];
 y0 = vehs[v].pnew[Y];
 x1 = x0 + vehs[v].speed * thc;
 y1 = y0 + vehs[v].speed * ths;
 A[0] = A[1] = vehs[v].B0;
 B[0] = B[1] = vehs[v].A0;
 C[0] = - A[0] * x0 - B[0] * y0;
 C[1] = - A[1] * x1 - B[1] * y1;
 dx = sensorWd2 * ths;
 dy = sensorWd2 * thc;
 P[0][X] = x0 - dx;
 P[0][Y] = y0 + dy;
 P[1][X] = x0 + dx;
 P[1][Y] = y0 - dy;
 P[2][X] = x1 - dx;
 P[2][Y] = y1 + dy;
 P[3][X] = x1 + dx;
 P[3][Y] = y1 - dy;
 A[2] = A[3] = vehs[v].A0;
 B[2] = B[3] = - vehs[v].B0;
 C[2] = - A[2] * P[0][X] - B[2] * P[0][Y];
 C[3] = - A[3] * P[1][X] - B[3] * P[1][Y];

 /* find minimum and maximum values */

 minx = maxx = P[0][X];
 miny = maxy = P[0][Y];
 for (i=1; i<4; i++) {
 if (P[i][X] < minx)

 55

void ch_idx(int v, int ix)
/* */
/* Change the vehicle id & GWP */
/* */
{
 int i;

 /* Change the GWP for the vehicle's id < v */

 i = vehs[v].buf[ix].ids;

 vehs[v].band_wd -= vh_int;
 if (vehs[v].id < i) {
 if (!(vehs[v].flag))
 ch_GWP(v);
 }
 else {
 /* Change the vehicle ID > v */
 vehs[v].id--;
 }
}

void ch_GWP(int v)
{
/* */
/* Change the Global Way Point */
/* */

 int jd, zn;

 jd = vehs[v].turn % 4;
 zn = vehs[v].dir;

 if (zn)
 vehs[v].dest[X] += vh_int;
 else
 vehs[v].dest[X] -= vh_int;

 if ((jd == 0) || (jd == 2)) {
 vehs[v].gwp_flg = 1;
 veh_dir(v);
 }
}

 54

 veh_dir(v);
 vehs[v].hm_fl = 0;
 }

 else {
 if ((vehs[v].clock % tr_head_ch) == 0) {
 veh_dir(v);
 }
 }
 break;
 case 2:
 vehs[v].wait_tm--;
 if (vehs[v].wait_tm <= 0) {
 /* Explosion */
 dead_veh(v);
 }
 break;
 case 3:
 /* vehicle dead */
 break;
 default:
 break;
 }
}

void getmsg(int v)
{
/* receive the message sent from the supervisor */
 int i, j;

 for (i=0; i<vehs[v].buf_idx; i++) {
 if (vehs[v].turn >= vehs[v].buf[i].trn)
 ch_idx(v, i);
 else {
 j = vehs[v].msg_idx;
 vehs[v].msg[j].flt = vehs[v].buf[i].flt;
 vehs[v].msg[j].ids = vehs[v].buf[i].ids;
 vehs[v].msg[j].trn = vehs[v].buf[i].trn;
 vehs[v].msg_idx++;
 }
 }

 vehs[v].buf_idx = 0;
}

 53

 vehs[i].dir = 1;
 vehs[i].id = vm1 - i;
 vehs[i].band_wd = wd[1];
 vehs[i].fleet = 1;
 vehs[i].clock = 0 - (vdiv2 + vehs[i].id) * delay;
 }
 }

 wr_rst(i);
 }

 no_alive = no_veh;
 no_destroy = 0;
}

void move_one_sec(int v)
{
 int flag, index, idx;

 if (vehs[v].hm_fl == 1) {
 if (vehs[v].buf_idx > 0)
 getmsg(v);

 /* Search target */
 index = srh_tg(v);
 if (index >= 0) {
 vehs[v].hm_fl = 2;
 vehs[v].explo = index;
 vehs[v].wait_tm = Bch_tm;
 }
 else
 move_bugs(v);
 }

 switch (vehs[v].hm_fl) {
 case 0:
 vehs[v].wait_dch--;
 if (vehs[v].wait_dch <= 0)
 vehs[v].hm_fl = 1;
 break;
 case 1:
 if (chk_bnd_area(v)) {
 get_newGWP(v);
 vehs[v].wait_dch = dir_hch;

 52

 else
 tmp_x += (float)st_x + 1.0;

 for (i=0; i<no_veh; i++)
 {
 vehs[i].pnew[X] = tmp_x;
 vehs[i].pnew[Y] = tmp_y;
 vehs[i].dgps[X] = tmp_x + vh_err();
 vehs[i].dgps[Y] = tmp_y + vh_err();
 vehs[i].dest[X] = tmp_x;
 vehs[i].dest[Y] = max_Y_length;
 tmp_x -= vh_int;
 vehs[i].turn = 0;
 vehs[i].flag = 0;
 vehs[i].speed = vh_tr_spd;
 vehs[i].hm_fl = 0;
 vehs[i].buf_idx = 0;
 vehs[i].msg_idx = 0;
 veh_dir(i);
 if (flg) {
 if (i <= vdiv2) {
 vehs[i].dir = 0;
 vehs[i].id = i;
 vehs[i].band_wd = wd[0];
 vehs[i].fleet = 0;
 vehs[i].clock = 0 - i * delay;
 }
 else {
 vehs[i].dir = 1;
 vehs[i].id = vm1 - i;
 vehs[i].band_wd = wd[1];
 vehs[i].fleet = 1;
 vehs[i].clock = 0 - (vdi2p1 + vehs[i].id) * delay;
 }
 }
 else {
 if (i < vdiv2) {
 vehs[i].dir = 0;
 vehs[i].id = i;
 vehs[i].band_wd = wd[0];
 vehs[i].fleet = 0;
 vehs[i].clock = 0 - i * delay;
 }
 else {

 51

 printf("vehs[i].pnew[X] = %f \n", vehs[i].pnew[X]);
 printf("vehs[i].pnew[Y] = %f \n", vehs[i].pnew[Y]);
 printf("vehs[i].dgps[X] = %f \n", vehs[i].dgps[X]);
 printf("vehs[i].dgps[Y] = %f \n", vehs[i].dgps[Y]);
 printf("vehs[i].speed = %f \n", vehs[i].speed);
 printf("vehs[i].hm_fl = %d \n", vehs[i].hm_fl);
 printf("vehs[i].clock = %d \n", vehs[i].clock);
 printf("vehs[i].band_wd = %f \n", vehs[i].band_wd);
}

void init_veh()
/*-- */
/* Function: init_veh */
/* Parameters: */
/* set the initial position for each vehicle */
/* Get the target for searching and define searching area */
/*-- */
{
 float tmp_x, tmp_y;
 int i, st_x, vdiv2, vdi2p1, flg, vm1;
 float wd[2];

 tmp_y = 0.0;
 vm1 = no_veh - 1;

 st_x = max_X_length / 2.0;
 vdiv2 = no_veh / 2;
 vdi2p1 = vdiv2 + 1;

 tmp_x = vh_int * vdiv2;
 wd[1] = tmp_x;

 if (no_veh % 2) {
 wd[0] = vh_int + tmp_x;
 flg = 1;
 }
 else {
 wd[0] = tmp_x;
 flg = 0;
 }

 if (vh_int > 3.95 && vh_int < 4.05)
 tmp_x += (float)st_x;

 50

 vehs[j].buf_idx++;
 }
 }
 }
 }
 sup.idx = 0;
}

float find_avmap()

/* */
/* find an average of the searched area in the minefield */
/* */
{
 int i, j, tot;

 tot = 0;
 for (i=0; i<=field_x; i++)
 for (j=0; j<=field_y; j++) {
 if (field[i][j] == 0)
 tot++;
 }

 return((1.0 - (float)tot / ((float)(field_x+1) * (float)(field_y+1))) * 100.0);
}

void init_field()
/* */
/* Initialize the test field */
/* */
{
 int i, j;

 for (i=0; i<=field_x; i++)
 for (j=0; j<=field_y; j++)
 field[i][j] = 0;
}

void wr_rst(int i)
{
 printf("vehs = %d \n", i);
 printf("vehs id = %d \n", vehs[i].id);
 printf("fleet = %d \n", vehs[i].fleet);

 49

 cleartb[tmp_ix] = cleartb[dv.quot];
 cltb_ix = tmp_ix;
 }
 }
 }
 cltb_last = cleartb[cltb_ix];

 tot_dead[itr-1] = no_destroy;
 tot_cled[itr-1] = no_cleared;
 no_tg[itr-1] = no_target;

 av_map[itr-1] = find_avmap();

 printf("\n");
 printf("The average searched area in iteration %d is: %8.2f%% \n",

itr, av_map[itr-1]);
 printf("The number of swimmers destroyed in iteration %d is: %5d \n",

itr, no_destroy);
 printf("%5d targets of %5d cleared in %7d steps \n", no_cleared,

no_target, step);
 }

 printf("\n");
 printf("The average percent of cleared targets over all iterations is:

%10.3f%% \n", avrg(tot_cled, no_tg, no_itr));

 wr_av_cl(no_itr);
 wr_cl_dt(no_tg, tot_dead, tot_cled, av_map, no_itr);
}

void supervisor()
{
/* communicate with the vehicles */

 int i, j, k;

 for (i=0; i<sup.idx; i++) {
 for (j=0; j<no_veh; j++) {
 if (vehs[j].hm_fl != 3) {
 if (vehs[j].fleet == sup.buf[i].flt) {
 k = vehs[j].buf_idx;
 vehs[j].buf[k].flt = sup.buf[i].flt;
 vehs[j].buf[k].ids = sup.buf[i].ids;
 vehs[j].buf[k].trn = sup.buf[i].trn;

 48

 if (dv.quot <= cltb_ix) {
 cleartb[dv.quot] += no_cleared;
 }
 else {
 cleartb[dv.quot] = cltb_last + no_cleared;
 }
 }
 }

 step++;
 }

 if (itr == no_itr) {
 fclose(outfx);
 fclose(outfy);
 wr_field();
 }

 dv = div(step-1, 60);
 tmp_ix = dv.quot+1;
 if (dv.rem == 0) {
 if (itr == 1)
 cltb_ix = dv.quot;
 else {
 if (dv.quot < cltb_ix)
 for (i=tmp_ix; i<= cltb_ix; i++) {
 cleartb[i] += no_cleared;
 }
 else
 cltb_ix = dv.quot;
 }
 }
 else {
 if (itr == 1) {
 cleartb[tmp_ix] = no_cleared;
 cltb_ix = tmp_ix;
 }
 else {
 if (tmp_ix <= cltb_ix) {
 for (i=tmp_ix; i<= cltb_ix; i++) {
 cleartb[i] += no_cleared;
 }
 }
 else {

 47

 /* wr_rst(); */

 if (itr == no_itr) {
 outfx = fopen("x.out","w");
 outfy = fopen("y.out","w");
 wr_xy();
 }

 no_cleared = 0;
 done = 0;
 step = 1;

 while(!done) {

 for (veh=0; veh<no_veh; veh++) {

 vehs[veh].clock++;

 if (vehs[veh].clock <= 0)
 continue;

 move_one_sec(veh);

 if ((vehs[veh].hm_fl < 3) && (vehs[veh].clock >= no_step)) {
 vehs[veh].hm_fl = 3;
 no_alive--;
 }
 }

 if (sup.idx > 0)
 supervisor();

 if (itr == no_itr)
 wr_xy();

 if (no_alive <= 0)
 done = 1;

 dv = div(step, 60);
 if (dv.rem == 0) {
 if (itr == 1) {
 cleartb[dv.quot] = no_cleared;
 }
 else {

 46

 }

 printf("\n");

 cleartb[0] = 0;

 printf("Input the desired vehicle speed: (in knots) \n");
 scanf("%f", &veh_nm);
 printf("\n");

 printf("Input the desired sensor range of the vehicle: (in meters) \n");
 scanf("%f", &veh_swath);
 printf("\n");

 set_env();

 printf("Input the number of seconds you want to run the simulation for.

\n");
 printf("The maximum time the program will run is %d seconds. \n",

max_step);
 printf("An input value of zero will default the simulation to maximum. \n");
 scanf("%d", &no_step);

 if (no_step == 0)
 no_step = max_step;

 printf("\n");

 for (itr=1; itr<=no_itr; itr++)
 {

 /* Initialize the targets */
 init_target();

 /* Initialize swimmers */
 init_veh();

 /* Initialize fields */

 init_field();

 /* initialize supervisor */
 sup.idx = 0;

 45

 }

 delay = B1_dt / vh_tr_spd + Bch_tm + 1;
 printf("\n");
 printf("The delay time between vehicles starting is: %d sec \n", delay);

 tr_head_ch = 7;
 tg_pcc = 1.0;

 max_step = 21600;

 printf("\n");
}

main(argc, argv)
int argc;
char *argv[];
{
 int no_itr;
 int itr;
 int done, i;
 int stepm1, veh, no_step, tmp_ix, cltb_last;
 float clOb_last;
 div_t dv;
 int tot_dead[1000]; /* Total # of dead vehicles for each iteration */
 int no_tg[1000]; /* # of targets for each iteration */
 int tot_cled[1000]; /* Total # of cleared targets for each iteration */
 float av_map[1000];

 if (argc != 3) {
 fprintf(stderr, "Usage: <program name> <# of vehicles> <# of

iterations>\n");
 return 1;
 }

 no_veh = atoi(argv[1]);
 printf("\n");
 printf("The number of vehicles for this simulation is: %d \n", no_veh);
 no_itr = atoi(argv[2]);
 printf("The number of iterations for this simulation is: %d \n", no_itr);

 if (!(vehs = (struct swimmer *)malloc(no_veh * sizeof(struct swimmer)))) {
 fprintf(stderr, "bounce: malloc failed\n");
 return 1;

 44

 max_X_length = 165 * YD; /* 165 Yards */
 max_Y_length = (10330 - 1259) * FT;
 field_x = max_X_length;
 field_y = max_Y_length;

 printf("The simulation field is: \n");
 printf(" %8.2f m by %8.2f m \n", max_X_length, max_Y_length);
 printf("\n");

 /* Establishment of the vehicle characteristics */
 vh_tr_spd = veh_nm * NM / 3600.0; /* vehicle speed in m/sec */
 tg_sensorW = veh_swath; /* Target sensor influence width */
 dir_hch = 1; /* Vehicle turning time 2 sec */
 gps_err = 2.0; /* 2.0 m of GPS Error */
 tg_pos_err = 1.0; /* |tg_pos_err| <= 1.0 */
 B1_dt = 50.0;
 B2_dt = 20.0;
 Bch_tm = 15;

 printf("The vehicle characteristics for this simulation are: \n");
 printf(" Speed is: %f m/sec \n", vh_tr_spd);
 printf(" Sensor range is: %f m \n", tg_sensorW);
 printf(" GPS error is: %f m \n", gps_err);
 printf(" Charge time is: %d sec \n", Bch_tm);
 printf("\n");

 /* computation of vehicle spacing */
 sensorWd2 = tg_sensorW / 2.0;
 vh_int = sensorWd2; /* establishes the default value */

input_phase:
 printf("The spacing between vehicles is %f m. \n", vh_int);
 printf(" percent overlap is: %7.2f%% \n", (tg_sensorW - vh_int) /

vh_int*100.0);
 printf("\n");
 ch = getchar();
 printf("Is this the desired overlap? (y or n) \n");
 ch = getchar();
 if (ch != 'y') {
 printf("\n");
 printf("Enter the desired vehicle interval: (in meters) \n");
 scanf("%f", &vh_int);
 printf("\n");
 goto input_phase;

 43

float pos_err();
float randn(void);
float avrg(int[], int[], int);
void wr_av_cl(int);
int chk_bnd_area(int);
float rand_pi(int);
void veh_dir(int);
void wr_rst(int);
void dead_veh(int);
void get_newGWP(int);
void ch_GWP(int);
void wr_cl_dt(int *, int *, int *, float *, int);
void wr_field(void);
float find_avmap(void);
void intersect(float *, float *, float *, float, float *, float *);
void ch_idx(int, int);
void msgtosup(int);
void supervisor();
void getmsg(int);

void set_env(void)
{
/* Definition of the vehicle characteristics */
/* and search field environment. */
/* */
 int tmp;
 int j;
 float tmp1;
 float FT, YD, NM;
 char ch;
 int intv;

 FT = 0.3048; /* 1 foot = 0.3048 meters */
 YD = 3.0 * FT; /* 1 yard = 3 foot */
 pi = 4.0 * atanf(1.0);
 NM = 1852.0; /* 1 nautical mile = 1852 meters */

 twopi = 2.0 * pi;
 thrpi = twopi + pi;
 thpi = thrpi / 2.0;
 piov2 = pi / 2.0;
 piov4 = piov2 / 2.0;

 /* Establishment of the search field environment */

 42

 float tg_dst; /* Target sensor distance */
 int explo; /* Searched target index */
 int wait_dch; /* Heading change time */
 int wait_tm; /* Vehicle waiting time */
 int clock; /* Vehicle start time from home */
 float band_wd; /* Search band width */
 int buf_idx; /* Message buffer */
 struct com_buf buf[5];
 int msg_idx; /* Saved message */
 struct com_buf msg[5];
 };
struct swimmer *vehs;

struct target {
 float pos[XY]; /* Target position */
 float gps[XY]; /* DGPS of target */
 int atr; /* Target attribute */
 /* if = 0 : false target */
 /* if = 1 : Bottom Influence @ 50 meter spacing */
 /* if = 2 : Moored Contact @ 20 m spacing */
 int sch_flg; /* if = 0 : target is unknown */
 /* if = 1 : target was found and cleared */
 };
struct target tgt[max_tg];

int cleartb[800]; /* contains total # of cleared targets */
int cltb_ix; /* index of clear table */

int field_x, field_y;
short int field[151][2765];

FILE *outfx, *outfy;

void set_env(void);
void init_veh(void);
void init_target(void);
void init_field(void);
void move_one_sec(int);
void chk_tg_po(int, int);
int srh_tg(int);
void wr_xy(void);
void move_bugs(int);
float rderr(void);
float vh_err();

 41

int Bch_tm; /* Charging time to destroy mine */
int delay; /* Delay time between vehicle starts */
float vh_int; /* Space between vehicle to vehicle */
int comm_tm; /* Vehicle Communication time */
int tr_head_ch; /* random search heading change interval */
float veh_nm;
float veh_swath;

struct com_buf {
 int flt; /* No Fleet */
 int ids; /* Vehicle id */
 int trn; /* Vehicle turn */
};

struct super {
 int idx;
 struct com_buf buf[10];
};

struct super sup;

struct swimmer {
 int fleet;
 int id; /* Vehicle id */
 float pnew[XY]; /* New position */
 float dgps[XY]; /* DGPS position */
 float dest[XY]; /* GWP */
 int gwp_flg; /* Path change flag */
 int turn; /* if turn = 0, move up */
 /* = 1 move right */
 /* = 2 move down */
 /* = 3 move right */
 int dir; /* If dir = 0 Left to Right */
 /* = 1 Right to Left */
 int flag;
 float speed; /* vehicles speed */
 float psi; /* vehicles direction */
 /* if hm_fl = 0 then wait */
 float A0; /* A0 x + B0 y + C0 = 0 at pnew[XY] */
 float B0;
 int hm_fl; /* if hm_fl = 1 then navigate to GWP */
 /* = 2 then target detonation */
 /* = 3 then stop */

 40

fry31_rev_final.c

/* */
/* Simulation of multiple swimmer vehicle */
/* robotic minesweeping in shallow water areas */
/* using a lawnmower search pattern with */
/* intermediate Global Way Points and with */
/* a communication link between the vehicle */
/* and a supervisor vehicle. */
/* Written by Joung K. Kim */
/* November 09 1999 */
/* Version 3 */
/* Modified by LT Peter M. Ludwig, USN */
/* February-May 2000 */

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define X 0
#define Y 1
#define XY 2
#define max_tg 20 /* Maximum No. of Targets */

float pi, twopi, thrpi, thpi, piov2, piov4, turn_ang;

int no_veh; /* Number of Vehicles */
int no_alive; /* Number of Vehicles alive */
int no_target; /* Number of Targets */
int no_destroy;
int no_cleared;

float max_X_length, max_Y_length;
float vh_tr_spd; /* vehicle speed on transition */
float tg_sensorW; /* Width of Target sensor */
float sensorWd2; /* half of Width of Target sensor */
int step; /* Time step */
int dir_hch; /* Heading change time (2 sec) */
int max_step; /* Maximum allowable time step */
float tg_pcc; /* Probability of correct classification */
 /* of Target */
float gps_err; /* Vehicle GPS error */
float tg_pos_err; /* Target position error when it placed */
float B1_dt; /* Mine #1 influence distance */
float B2_dt; /* Mine #2 influence distance */

 39

APPENDIX A. CODED PROGRAM FILE

This appendix contains the code for the computer simulations, written utilizing C

programming language.

 38

operations. Certainly as the myriad of technologies supporting this concept grows, so do

the possibilities.

B. RECOMMENDATIONS

In support of the significant growth potential of this research and to further

validate the feasibility and functionality of this concept, the following recommendations

for additional study are made:

o Include more detailed swimmer guidance laws, including cross track and
long track error control as opposed to the simple line of sight guidance
used in this study.

o Account for already sensed mines escaping detonation and remaining

active, such as would be seen with smart mines like ship counters or due to
a misfire during the detonation process by a swimmer.

o Develop and utilize optimization techniques based on probability of

complete clearance to analyze simulation results and determine the vehicle
parameters most conducive to conducting robotic minesweeping
operations.

 37

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSION

The problem of robotic minesweeping is extremely complex, and must allow for

multiple scenarios. Accordingly, due to the preliminary nature of this research, its scope

was limited to verification of the validity of the concept. This was accomplished through

detailed analysis of simulation code, improving the code, and conducting simulations to

verify the results.

During the process of analyzing the code, four topics were identified as primary

areas of concentration. These included the principle of overlap, effects of varying the turn

time, vehicle identification procedures, and track re-allocation. Of these four areas, one,

the effects of turn time, was found to be not as critical as previously thought.

Specific improvements to the code were made in the areas concerning calculation

of overlap and track re-allocation. Additionally, minor changes were made throughout the

code to help make it a more useful tool.

Simulations were conducted to verify the concept. While not the specific goal of

the simulations, ballpark figures for the optimization of sensor width and vehicle spacing

were uncovered. Additionally, without taking into consideration any of the resistive

forces, certain limitations of using slower speed vehicles for the operations were shown.

Overall, this study provided extremely encouraging results and validated the

concept of multi-vehicle fleets of robotic swimming vehicles being used for minesweeping

 36

Figure 4.4 Rapid Sequence of Vehicle Re-tasking

Additionally, a unique situation was seen as depicted in Figure 4.5 where a mine was

sensed and neutralized while a vehicle was being re-allocated. This displays the flexibility

and rapid response to change that would be required of the vehicles.

Figure 4.5 Mine Neutralization During Re-allocation

 35

Figure 4.3 displays the converse. It shows the vehicles being spaced too far apart

and therefore covering the entire minefield, but a large number of holidays in the areas

covered account for the poor results seen with five meter spacing.

Figure 4.3 Simulated Tracks at 5 Knots and 5 m Spacing

 Obviously, from the results seen the optimum value for vehicle spacing lies

somewhere in the mid-range area.

D. INTERESTING RESULTS

During the course of reviewing the graphical outputs from the simulations

conducted, a couple of interesting items were noticed. The first, as shown in Figure 4.4, is

a fairly rapid sequence of vehicle re-tasking. Such a scenario is highly probable in reality,

so it was interesting to note that the simulation handled it well.

 34

in the coverage area would occur. However as seen in the data and as graphically

depicted in Figure 4.2, a point of diminishing return can be reached and exceeded.

Figure 4.2 Simulated Tracks at 5 Knots and 1.5 m Spacing

Clearly seen in the figure, the vehicles are spaced to closely together so that the

vehicles are unable to cover all the minefield before the simulation time runs out. While

extremely good coverage and a high probability of successful detection of all mines is seen

in the areas searched, the outer edges of the minefield were not searched and the overall

results are poor. However, this also prompts the idea that perhaps narrow vehicle spacing

while not performing well in larger minefields, might be much more aptly suited to use in

areas where only a relatively narrow path need be swept, for example, a shipping lane.

 33

C. EFFECTS OF VARYING THE VEHICLE INTERVAL

Table 4.5 reflects those simulation parameters that were maintained constant while

determining the effects of varying the vehicle interval.

of
Vehicles

of
Iterations

Vehicle Speed
Sensor
Width

Simulation
Time

20 100 5 KTS
4.2672 m

(14 ft)
7200 sec

Table 4.5 Simulation Parameters for Analysis of Varying Vehicle Spacing

For this group of simulations, the desire to see results for a very large, a mid-

range, and a negative percent overlap fueled the decision of appropriate vehicle spacing

numbers. Respectively, vehicle spacing of 1.5 m, 2.5 m, and 5 m were chosen. The

tabulated results appear below in Table 4.6.

Vehicle Spacing % Overlap % Cleared Targets % Searched Space

1.5 m
(4.9213 ft)

184.48 % 87.055 % 91.63 %

2.5 m
(8.2020 ft)

70.69 % 99.545 % 98.86 %

5 m
(16.4042 ft)

-14.66 % 91.500 % 92.18 %

Table 4.6 Simulation Results for Various Vehicle Spacing

The results seen here provide good insight into the vehicle behavior. Initially, one

would think that a greater percent overlap would likely yield better results as less holidays

 32

of
Vehicles

of
Iterations

Vehicle Speed
Vehicle
Spacing

Simulation
Time

20 100 5 KTS
2.5 m

(8.2020 ft)
7200 sec

Table 4.3 Simulation Parameters for the Analysis of Varying Sensor Width

For these simulations, sensor widths were chosen based on the length of a whisker

arm. The initial choice of a ten foot swath width came from the minimum length of five

feet specified for a whisker pole in the concept. The subsequent 14 foot and 18 foot runs

resulted from incrementally adding an additional two feet to each whisker pole. The

averaged results for all one hundred iterations of these runs are shown in Table 4.4.

Sensor Width % Overlap % Cleared Targets % Searched Space

3.048 m
(10 ft)

21.92 % 98.982 % 97.11 %

4.2672 m
(14 ft)

70.69 % 99.545 % 98.86 %

5.4864 m
(18 ft)

119.46 % 100.00 % 99.69 %

Table 4.4 Simulation Results for Various Sensor Widths

The results returned from these runs are extremely encouraging, especially the

100% average clearance rate seen for the 18 foot swath width. Considering that a very

good percent clearance rate was also achieved for a 14 foot sensor width, the data clearly

reveals that the optimal sensor width for the specified parameters lies somewhere between

14 feet and 18 feet.

 31

knots. Figure 4.1 graphically shows the results of all the vehicles for the 2.5 knot

simulation.

Figure 4.1 Simulated Tracks at 2.5 Knots

Clearly, because of the slow speeds, the vehicles were unable to reach the

boundaries of the minefield in the allotted timeframe.

B. EFFECTS OF VARYING THE SENSOR WIDTH

The parameters maintained constant for the simulations where sensor width

variations were considered are shown in Table 4.3.

 30

of
Vehicles

of
Iterations

Sensor
Width

Vehicle
Spacing

% Overlap
Simulation

Time

20 100
4.2672 m

(14 ft)
2.5 m

(8.2020 ft)
70.69 % 7200 sec

Table 4.1 Simulation Parameters for Analysis of Varying Vehicle Speeds

The results obtained for simulations using vehicle speeds of 2.5 KTS, 5 KTS, and

7 KTS are shown here in Table 4.2. It was anticipated that as the vehicles speed

decreased, the simulation results would also show a definite decline in effectiveness.

Certainly, these results prove this to be true. The results depicted are the average of the

results for all one hundred iterations.

Vehicle Speed % Cleared Targets % Searched Space

2.5 KTS 88.382 % 80.77 %

5 KTS 99.545 % 98.86 %

7 KTS 99.727 % 99.06 %
Table 4.2 Simulation Results for Various Vehicle Speeds

Only clearing eighty-eight percent of the mines laid and searching only eighty-one

percent of the minefield in the 2.5 knot run is clearly an unsatisfactory solution for a slow

speed search. The decreasing effectiveness seen here could become a potential problem as

vehicles start to encounter resistance forces such as drag forces, waves and ocean

currents. Therefore, it must be recognized when designing the vehicles that their

propulsion systems must possess enough power to be able to overcome these external

effects and still achieve a reasonable speed over the ground, likely somewhere around five

 29

IV. RESULTS

Of course, no conceptual study would be complete without a verification of the

methods. To do this, it was decided to run multiple simulations and over the course of

these simulations to alter the speed of the vehicle, vary the sensor width, and adjust the

vehicle spacing. Although optimal results for the simulation would be found by altering

multiple parameters simultaneously, due to the preliminary nature of this work, it was

decided to change only one parameter at a time so that the effects of that change could be

clearly understood.

For the purposes of these multiple simulation runs, only three parameters, the

number of vehicles, the number of iterations, and the simulation time remained constant

throughout all the simulations. Twenty vehicles were chosen for the runs to ensure that

there would always be a greater number of vehicles than there would be mines. One

hundred iterations were chosen to verify both the accuracy and precision of the results.

The simulation time of 7200 seconds, or two hours, was chosen to represent the current

technological limitation imposed on this concept by modeling an easily accomplished

approximate endurance.

A. EFFECTS OF VARYING THE VEHICLE SPEED

The parameters shown in Table 4.1 are the parameters maintained constant while

the vehicle speeds were altered.

 28

offset (ÄX) from the position of the first vehicle, which is considered to be a reference

point for the other vehicles.

2. Calculation of and usage of ÄX

The idea of vehicle ID re-assignment is the critical factor in determining a vehicle’s

desired horizontal offset. The other critical assumption is that the vehicles are on track

and have not deviated beyond the limits of navigational error. In reality, this may be a

problem due to varying factors such as ocean current forces, vehicle drag forces, and

navigational system reliability, however, for the purposes of this research, these factors

were ignored. So, under this assumption, simply knowing that the spacing between

vehicles is to remain constant, coupled with the concept of vehicle ID reassignment, the

current delta of the vehicle is given by

 spacing. vehicle (i) id vehicle(i) X ×=∆

Once ÄX is calculated, the program enters the data into a series of conditional

loops. Inside of these loops, ÄX is compared with the position of the desired GWP. The

final result being the updated track, as seen in Figure 3.4, that takes the swimmer vehicle

to the point where it can resume its nearly vertical path to its newly assigned GWP. Upon

reaching the GWP, the swimmer using its updated GWP file continues with its regular

search pattern until the simulation ends or another mine is sensed.

 27

disseminated to the swimming vehicles. As an example, Figure 3.4 clearly shows such a

shift.

Figure 3.4 Example Vehicle Shift

As seen in this example, vehicle 10 was clearly lost to a mine in an area that

correlates to the first mine danger area. When this occurred, vehicle 9, as directed by the

supervisor, obviously alters course in order to shift its track to head for the newly assigned

GWP that was previously allocated to vehicle 10. This allows the vehicles to search and

sweep the maximum amount of area possible, leaving only minimal gaps of un-covered

area (holidays) in the process. Other vehicles with ID numbers less than nine follow suit,

but were left out of the figure for clarity.

 Logically, determination of the course change required for the track re-allocation

is a function of the vehicle’s position. The vehicles position is calculated as a horizontal

 26

always referenced as zero. However, in order to try to reduce the confusion that this

practice might present when viewing graphical displays of the data, the permanent vehicle

ID correlates directly to its position in line. For example, the first vehicle in line is referred

to as vehicle one and the twentieth vehicle in line is vehicle twenty. Initially, both the

primary ID and secondary ID are identical. However, as vehicles are killed, the secondary

ID for all vehicles possessing a primary ID greater than that of the killed vehicle will be

reduced by one. This then allows the vehicles tracks to be re-allocated in a fairly simple

manner. This concept can best be summarized by the following variable re-assignment

logic.

given timeany at vehiclesremaining of # n

 vehiclesinitial of # N

where

ki dead;(i) vehicle_id

1-n 1,ki 1;-i(i) vehicle_id

1-k0, i i; (i) vehicle_id

killed is vehiclethk If

1-N0,i i; (i) vehicle_id

Initially

=
=

==
+==

==

==

E. TRACK RE-ALLOCATION

1. Basis of Re-allocation

When the supervisor determines a track re-allocation is necessary, the magnitude

of the shift must be calculated and tracks to the new GWPs must be determined and

 25

turn time, because any subsequent changes made to the program would have carried

through to all experimental runs had they been conducted on the final version

Turn Time (seconds) % Cleared Targets % Space Searched

1 99.727 % 98.80 %

2 99.627 % 98.74 %

3 99.364 % 98.82 %

4 99.727 % 98.80 %
Table 3.3 Experimental Results of Varying the Turn Time

 As is clearly shown in this data, varying the turn time did not have the

significant effect on the simulation as expected. With identical results obtained for turn

times of one second and four seconds, it was decided to maintain the turn time setting at

one second.

D. VEHICLE IDENTIFICATION PROCEDURES

In order to support the concept of vehicle re-tasking when one is lost, the vehicles

utilize a dual identification scheme. Each vehicle is assigned a primary, permanent ID as

well as a secondary, changeable ID number, which is based on the number of vehicles

remaining in the scenario. The vehicle is tracked and all vehicle data is recorded using its

permanent name. For computational purposes and data management internal to the

program, the permanent ID of the first vehicle in line is assigned a value of zero and the

last vehicle assigned a value of one minus the total number of vehicles. This is done to

support the data structure arrays required to execute the code, where the first element is

 24

required for it to reach its next assigned GWP. Thinking that this might be too fast,

therefore, not accurately reflecting true vehicle motion, a decision to alter the value and

determine the effect on the simulation was made. Of particular interest was the impact any

increase in this delay time might have on the "shock factor" phenomenon.

Analytical determination of a better value became difficult, as a realistic track

would have the vehicle making a sweeping motion around the general vicinity of the

GWP. During this type of motion the vehicle travels in both the general direction of the

old heading and the general direction of the new heading while making the turn, therefore,

determining the exact time lost to the turn becomes somewhat nebulous. Consequently,

an experimental approach to the solution, where the delay time was incrementally

increased, simulations were run, and the results were examined, was used. Table 3.2

displays the simulation parameters that were used when conducting these experiments.

of
Vehicles

of
Iterations

Vehicle
Speed

Sensor
Width

Vehicle
Spacing

%
Overlap

Simulation
Time

20 100 5 KTS
4.2672 m

(14 ft)
2.5 m

(8.202 ft)
70.69 % 7200 sec

Table 3.2 Experimental Simulation Parameters

Table 3.3 presents the data obtained from these experiments. It should be noted

that the data gathered during these experiments should be considered example results not

final results as the simulations were run on a version of the program other than the final

version. However, the data remains viable for determination of the effects of varying the

 23

Figure 3.2 Vehicles with 100% Overlap

On the opposite end of the spectrum, Figure 3.3 portrays a pair of vehicles that

have zero overlap; half the vehicle spacing equals half the vehicles swath width.

Figure 3.3 Vehicles with 0% Overlap

C. EFFECTS OF VARYING THE TURN TIME

Upon reaching an assigned GWP, the original program allowed for a one second

delay to account for the time it took the vehicle to change course to the new heading

 22

However, due to the preliminary nature of this research, all vehicle sensors are

assumed to have the same effective range. While sensor width is a user-defined

parameter, it is anticipated that typically, the value input will be that of the smallest range

whiskers. To do otherwise, would lead to extremely erroneous results being obtained.

Furthermore, it is anticipated that follow-on work will account for the different sensor

widths, the resulting effects of multiple degrees of overlap, and ultimately the implications

it has to the overall simulation results.

2. Calculation of Overlap

As shown previously, overlap is a function of the vehicle spacing and the sensor

width. Based on the underlying description of overlap, percent overlap refers to the

percentage of the vehicle interval that is swept by multiple vehicle passes. Accordingly,

percent overlap is calculated using the following equation:

100
Interval Vehicle

Interval Vehicle -th Sensor Wid
Overlap % ×= .

A zero or negative value, indicating a lack of overlap, will be returned when the

vehicle interval is equal to or greater than the sensor width. The more negative the value,

the greater the vehicle separation. Also, a value greater than 100% may be achieved if the

sensor width is greater than two times the vehicle interval. Figure 3.2 graphically depicts

the programs default value of 100% overlap; the vehicle spacing equals half the vehicles

swath width.

 21

area. For the purposes of this figure, the same vehicle on different legs of its path

generates the overlap. However, it follows that overlap will also result when two separate

vehicle's sensors cover the same area.

The horizontal distance between the vertical tracks seen in the diagram represents

what is referred to as the vehicle spacing, additionally spoken of as the vehicle interval.

As shown in Table 3.1, this spacing is a user-defined parameter in the MVMP simulation,

with a default value equal to one half of the sensor width. The input value should be

chosen to reflect the desired guidelines for a specific search.

Consequently, it can be seen that percent overlap is a function of both the vehicle

interval and the sensor width. Detailed descriptions of sensor width and calculation of

percent overlap follow.

1. Sensor Width

Reality holds each sensor having its own limiting range of effectiveness, with the

smallest range, in general, being that of the whiskers used to mechanically detect the

cables of the moored mines. Sensor widths are a function of the strength of the permanent

magnet, the decibel level of the noisemaker, and the length of the whiskers. Additionally,

the inter-relationship of these swath widths becomes extremely complicated with multiple

degrees of overlap being created and varying resultant effects dependent upon mine type.

It is projected that these multiple sensor widths would have a possible impact on the

"shock factor" phenomenon and also becomes extremely important when mines with ship

counters are considered.

 20

B. PRINCIPLE OF OVERLAP

Chapter II, section C, particularly, Figure 2.3 introduced the principle of overlap

and stated its primary uses are for compensation of navigational errors and to help

increase the probability of complete clearance. Figure 3.1 below is an expanded view of

the section of Figure 2.3 that details this principle.

Figure 3.1 Vehicle Overlap

The shaded areas in the figure represent the vehicle's sensor width, also referred to

as the swath width, and equates to the range to which a vehicle's sensors are effective.

The expression sensor width as used in the simulation is the total horizontal range of the

sensors. For example, a vehicle, which has an effective sensor range of five feet from its

centerline, would have a ten-foot sensor width. The term overlap refers to that area

depicted in the center of the diagram where the sensor widths cover the same geographical

 19

III. PROGRAM EVALUATION

A. PARAMETER SETTINGS

A simulation code, MVMP (Multi Vehicle Minesweep Program), initially

developed by J. Kim was used as the basis for this evaluation study. For reference

purposes, Table 3.1 lists the critical simulation parameters.

Parameter Setting Default Value Modeling Method

Sensor Width User Input - Input Statement

Vehicle Spacing User Input ½ Sensor Width Input Statement

Turn Time 1 sec - Fixed

Navigational Error 0 – 2 m - Random Number

Mine Placement Position Error 0 – 1 m - Random Number

Influence Mine “Shock Factor” 25 m radius - Fixed

Moored Mine “Shock Factor” 10 m radius - Fixed

Delay Time to Destroy Moored
Mines

15 Sec - Fixed

Vehicle Delay Time Function1 - Calculated

Vehicle Speed User Input - Input Statement

Overlap Function2 100% Calculated

Number of Vehicles User Input - Input Argument

Number of Iterations User Input - Input Argument

Length of Simulation User Input 21600 sec Input Statement

Table 3.1 Program Parameter Settings

1 Function of influence mine “shock factor”, vehicle speed and the delay time to destroy the

moored mines, calculated using the equation:

1delay timen destructio
speed vehicle

factor"shock " mine influence
 delay ++= .

2 Function of vehicle spacing and the vehicle sensor width. Further detail on this parameter
follows later in the chapter.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 17

demonstrate the distinction between the mine types used in the scenario. In reality the

mine would determine this for the vehicle by detonating and destroying the vehicle if it

were an influence mine. If the sensed mine is a moored mine, the report reflecting this is

shown going out to the supervisor. The diagram also illustrates the vehicle’s decision to

change its track once it receives an update message from the supervisor. The vehicle

continually repeats the process until it is killed, its battery runs out, or the search time is

expired.

 16

The second and third logic diagrams are contained within each vehicle block, and

represent diagrams specific to that vehicles operations. Dashed lines represent all internal

communications and the solid lines represent all logic flow. In a broader view of the

scenario, the third diagram would be repeated for as many swimmer vehicles as were

utilized for that operation, and the supervisor vehicle would receive input through its

communications port from all of the swimmer vehicles, as reflected in figure 2.1.

The second diagram, that of the supervisor vehicle, shows the vehicle state

processor and its link to the decision process within the supervisor. As communication is

lost with a vehicle, the supervisor determines which vehicle was killed, determines if any

vehicles are remaining, if so, re-assigns tracks based on GWPs. The process is repeated

until the search time runs out or there are no more vehicles remaining. Loss of

communications with a vehicle is initiated either by the loss of a signal from a vehicle or by

a report of a vehicle locating and starting the demolition process of a moored mine.

Additionally, it is envisioned that the vehicle state processor could as necessary initiate a

query process of all vehicles to determine their status.

The third diagram shows the swimmer vehicle logic assuming it is following its

assigned track and sending a signal to the supervisor showing that it remains alive until

either sensing a mine or receiving an updated track. For the purposes of the flow chart,

the term sensed is used to distinguish between the vehicle detecting a moored mine or an

influence mine detecting the swimmer. Once the vehicle senses a mine, the chart shows a

logic step of determining whether the mine is an influence mine or not. This is a step to

 15

Figure 2.5 Logic Flow Chart for Robotic Minesweeping

 14

proceeding along its track, thinks the swimmer is a ship, and detonates itself, destroying

the swimmer in the process.

Further requirements for these vehicles would be small data processors linked with

underwater navigational equipment in order for the vehicles to maintain track. In addition

to monitoring and controlling its own functions, the data processor requirements are to

receive information from the supervisor, determine the appropriate response, and rapidly

execute any required actions. The processor must also be able to store a minimal amount

of information, in particular the assigned track and associated GWPs. Precise navigational

requirements for these vehicles have yet to be determined, however, it is recognized that

to preserve the integrity of the minesweeping operation, fairly accurate systems would be

required. For the purposes of this research, a navigational error up to two meters was

assumed. This is modeled as a random position offset from the desired track.

E. LOGIC

Fundamental to understanding the complex nature on which this concept is built is

to comprehend the logic of its basis. Figure 2.5 displays this logic in an easy to follow

graphical format (see page 15). This logic diagram is best considered as three diagrams

built into one.

The first of these three diagrams being a simple two block diagram linking the

swimmer with the supervisor. Each of the vehicles is represented by one of the two large

outer boxes of the diagram. The large double-sided arrow connecting the communications

port of each represents the two-way communications link between the vehicles.

 13

While not accounted for in this scenario, and as previously discussed, this multiple pass

behavior increases the probability of complete minefield coverage as well as helping

account for mines that are equipped with such devices as ship counters.

2. Swimmer Vehicles

 As previously mentioned, the primary design consideration for the

swimmers is their expendability, so minimization of onboard equipment, sensors, and

processors becomes a priority.

In order to detect and sweep the mechanically activated tether mines the vehicles

will carry mechanical probes (whiskers) that extend from the vehicle in the horizontal

plane. The whiskers will be long (greater than five feet is envisioned); slender rods having

a hooked shaped end. The tethered mines are detected when the swimmers proceed along

track and the mechanical probes strike and hook the mooring cable of one of the moored

mines. The swimmer subsequently reports to the supervisor the detection of a moored

mine. The vehicles propulsion control system then causes the swimmer to steadily climb

the mooring cable to reach the mine casing. Once the vehicle senses that it reached the

mine casing, detonation of an onboard explosive destroys the mine and the swimmer.

For sweeping of the bottom lying influence mines, the vehicle must be capable of

generating both magnetic and acoustic signatures, which adequately represent that of a

ship. To do this, the vehicles carry a sufficiently strong permanent magnet apparatus and

noise-making device. The sweeping of the mine occurs when it detects the swimmer

 12

allocations more pronounced. Tracks that end in the field represent loss of a vehicle to a

mine.

Figure 2.4 Swimmer Vehicle Tracks for a 20 Vehicle Simulation

Also particularly noticeable in this figure, especially on the left hand side, the

supervisor recognizing that a swimmer reaches the constraint imposed by the boundary of

the minefield, assigns a track such that the vehicle will re-sweep areas previously covered.

This action continues as long as battery power and operational time constraints allow.

 11

vehicle relays progress reports to and maintains communications with a control ship

through an acoustic modem and/or a line of sight radio link.

For the purposes of the research conducted in support of this thesis, the initial

tracks from the launching platform to the rendezvous point are not accounted for.

Additionally, no consideration is given to the limitations of communications between the

supervisor vehicle and a control platform. Since this research is considered preliminary, it

was decided that these factors should be disregarded for now, and accounted for in

follow-on research..

1. Supervisor Vehicle

 The larger, and more complex supervisor vehicle’s primary design criterion

revolves around a vehicle state processor, utilized to analyze the data received from the

swimmer vehicles. The onboard computers carry all pertinent data regarding the minefield,

including the GWPs used to assign the swimmer vehicle tracks. The vehicle state

processor monitors all transmissions from and queries the swimmer vehicles as necessary

in order to determine if any vehicle was killed due to a mine explosion. If a swimmer was

destroyed, the processor must determine which vehicle it was and then assign new tracks

to all remaining vehicles. Additionally, the supervisor must monitor the search time, and

vehicle progress, and re-call any remaining vehicles when the search reaches the end of the

specified parameters. As an example, figure 2.4 shows a two-hour, twenty-vehicle

simulation and the dynamical re-allocation of tracks to the swimmer vehicles by the

supervisor. It should be noted that the axes are not set equal which makes the track re-

 10

Positioning System (GPS) points, also known as Global Way Points of planned tracks

(GWPs) as assigned by the supervisor vehicle. The heavy black lines connecting the

GWPs depict the ideal track for a swimmer. Additionally, the shaded areas illustrate the

effect of sensor width overlap along the vehicle tracks. The subject of overlapping is more

thoroughly addressed later in the text.

D. VEHICLE DESCRIPTIONS

The AUVs and/or UUVs conceptualized are to be small enough and portable

enough that the fleets of these minesweeping vehicles may be transported and launched

from virtually any US Navy or Naval Force ship. Additionally, the swimmer vehicles are

considered to be expendable in that they may be destroyed in the process of

minesweeping.

Once a potential minefield is identified for reconnaissance and/or neutralization,

the fleets are to be pre-programmed to swim to a specified GWP, and then launched from

either a single ship or multiple ships. Upon reaching the assigned GWP the swimmer

vehicles are to be coordinated and controlled by the supervisor vehicle for the mine

countermeasures operation.

Communications between the supervisor vehicle and the swimmer vehicles exist

primarily through acoustic modem transmissions. If the vehicles were to be operating in

extremely shallow water, such as immediately in front of a beachhead that will be utilized

for an amphibious landing, and a radio antenna were able to broach the ocean surface, then

line of sight radio communications also may be utilized. Additionally, the supervisor

 9

the probability of complete clearance (Poverall) is a function of the vehicle’s probability of

detection (p). Additionally, multiple passes over an area significantly increase the

probability of a complete sweep of the minefield. Assuming m passes are made over the

same area, the probability of complete clearance becomes

])([mp
overall

P −−= 11 .

With this in mind, and considering the use of overlap to help account for

navigational errors and to help increase the number of passes over an area, a lawnmower

complete area search pattern with overlap was chosen. Figure 2.3 demonstrates the basic

concept of the lawnmower search pattern as utilized.

Figure 2.3 Lawnmower Search Pattern

The dashed line in the figure represents the boundaries of the portion of the

minefield being shown. The dots just outside of the minefield boundaries are the Global

 8

Figure 2.2 Minefield Layout

When a simulation is conducted, the computer code randomly generates a minefield that

conforms to these constraints.

C. SEARCH PATTERN

Koopman (1980) and Stone (1975) discuss various methods of search revealing

their extremely complex natures, and show that each has its own advantages and

disadvantages. As discussed in Healey (1999), a linear relationship between percent

coverage and search time is obtained when using a complete area search method. As well,

 7

Should additional vehicles be within this footprint during detonation, multiple vehicles

would be lost to a single mine. Obviously, this phenomenon is undesirable and

consequently the staggered start times were developed.

Detailed descriptions of the various aspects of the scenario utilized for this

research, as provided by Mr. Lee Fry of Coastal Systems Station, Panama City FL, is

discussed in the following sections of this chapter.

B. MINEFIELD

 In a X-Y coordinate system with the X coordinates being viewed in the horizontal

direction and the Y coordinates being viewed in the vertical direction, the minefield for the

simulation is sized 150.88 meters (165 yards) by and 2764.84 meters (3023.67 yards).

The minefield contains two parallel mine lines spaced 506 meters (533.37 yards) apart.

The first mine danger area is assumed to contain bottom resting influence mines that are

triggered by either the magnetic or acoustic signature of a passing vessel. The mines

within this zone area are spaced 50 meters (54.68 yards) apart. Mine danger area two

contains mechanically activated, tethered mines that are triggered when a vessel strikes a

mechanical probe protruding from the mine casing. Mines in this line are spaced 20

meters apart. Figure 2.2 graphically depicts this scenario.

 6

shifts its course to reflect the change. A typical vehicle layout for a twenty-vehicle fleet is

shown in Figure 2.1.

Figure 2.1 Typical Layout for a 20 Vehicle Scenario

The staggered formation of the vehicles results from incorporating delay times

between the vehicles starting their search. Principally this is done to allow the vehicles to

spread out enough to minimize the effects of the “shock factor” phenomenon. “Shock

factor” is best characterized as the range of influence of a particular mine when it

detonates and is a function of the charge strength of the particular mine in question.

 5

II. CONCEPT

A. OVERVIEW

In an effort to develop a viable mine warfare countermeasure technique that can be

rapidly and effectively deployed in support of the contingency operations as previously

mentioned, the use of a multi-vehicle fleet of autonomous underwater vehicles linked to a

supervisor vehicle through two-way paths of communication is being considered. Within

this theory, the supervisor vehicle is to be stationed outside of the designated minefield yet

maintain communications links with all the swimmer vehicles. While not specifically

addressed, and not really relevant to this study, it is noted that the supervisor could be

either stationary or mobile depending upon the tactical situation of the specific clearance

operation being conducted. Additionally, use of multiple relay stations could be

incorporated into the scenario if necessary to increase the range of the communications

links beyond what is technologically feasible for single point links. The swimmer vehicles

are to be inexpensive, expendable, and carry a minimum amount of equipment necessary

to conduct mine clearance operations. These vehicles through various methods will sense

and detonate a mine, thereby neutralizing the mine, and would in the process be lost.

When a vehicle is lost to the neutralization of a mine or otherwise looses communication

with the supervisor vehicle (such as through the loss of battery power) the supervisor

vehicle then re-allocates assigned tracks to the remaining vehicles in order to ensure

maximum coverage of the minefield. Once a swimmer vehicle receives updated tasking, it

 4

Chapter IV shows results that prove that the program is effective. Simulations

were conducted using various different combinations of simulation time and number of

vehicles. Additionally, some results are displayed graphically and the results are discussed.

Chapter V summarizes the conclusions of this research as laid out in the previous

chapters. Additionally, recommendations for further study are made.

Subsequently, there are three appendixes attached to this report. Appendix A is

the coded program file. Appendix B is a small Matlab file used for generating graphs of

the output data from the program. Appendix C is a users guide to the program.

 3

B. SCOPE OF THIS WORK

The overall problem of robotic minesweeping is complex and diverse involving

many different scenarios, mine types and various other contributing factors. This study

will focus on the evaluation and implementation of the computer simulation, Multi Vehicle

Minesweep Program (MVMP), for mine clearance operations using multiple swimming

robotic vehicles. Their actions are coordinated through a supervisor vehicle in order to

ensure maximum minefield coverage. In particular, as mines are cleared and thus a vehicle

killed, the remaining vehicles will be re-tasked by the supervisor vehicle to close the gap

left open by the explosion. The purpose of this thesis is threefold:

1. To analyze a previously coded computer simulation.

2. To implement any necessary changes in the computer simulation.

3. To run simulations and evaluate the output.

Chapter II discusses the concept of robotic minesweeping and provides a detailed

description of the concept and aspects of the scenario. Included discussions concentrate

on the minefield layout and mine types, the search pattern utilized, the vehicles and their

operations, and the control logic for the simulation.

Chapter III describes various fundamental aspects of the program. In particular, it

addresses the critical issues of vehicle overlap, assignment of vehicle identification

numbers, track re-assignment, including calculations of the distance required for vehicle

shift, and the effects of varying the vehicle’s turn time. Additionally, a table showing the

critical simulation parameters and their respective modeling methods is included.

 2

the coming years compel us to develop a Naval Mine Warfare capability that will ensure

the safe operation of our forces in hostile littoral regions.” (Crute, 2000) Current mine

countermeasure methods involve the use of highly specialized forces using expensive

equipment and ships. This often results in personnel having to enter the minefield in order

to neutralize a mine. Additionally, such methods tend to be extremely time consuming and

cannot be guaranteed to have neutralized all potential threats to Naval forces. Ultimately,

it is desired that any force could rapidly and as effectively as possible, neutralize a

minefield with a minimum of risk involved, thereby, allowing for the rapid deployment of

forces in any contingency operation. One solution is “for operations that require the

clearance of mines over large areas, a cooperative engagement approach, utilizing remote

and autonomous vehicles from multiple platforms will facilitate the rapid and thorough

sanitization of the area.” (Crute, 2000) Additionally, it is noted “Advances in robotics,

artificial intelligence, and underwater communication will lead to greatly reduced risk to

personnel in the dangerous business of mine countermeasures. We will progressively

remove the man from the minefield. Remote or autonomous vehicles will map minefields

and, if necessary, neutralize mines. High value assets will transit cleared areas with

minimal risk from enemy mines.” (Crute, 2000) The research conducted in support of this

thesis is the beginning of one such approach to mine countermeasure operations.

 1

I. INTRODUCTION

A. BACKGROUND

Due to rapid increases in technological developments over the last several years,

small Autonomous Underwater Vehicles (AUVs) and Unmanned Underwater Vehicles

(UUVs) are attractive for use in scientific, commercial and military applications in the

ocean. One of the greatest benefits of these vehicles is the removal of the tether that has

previously been required for the transfer of sensor data and control of underwater robotic

vehicles. This removal allows the vehicles to travel into areas that were previously

considered unreachable due to depth or extent, where the tether may simply have become

fouled, or inherent danger existed which could have damaged either the tether or the

controlling ship. As such, since the launching ship can remain at a reasonably safe

distance, the attractiveness of these vehicles for use in minesweeping operations becomes

readily apparent.

With the changing global structure and the nature of potential adversaries, US

Naval Forces continue to place a greater emphasis on littoral warfare, which necessitates

the increasing need for effective, relatively inexpensive, and rapidly deployable mine

countermeasure operations. As stated in NAVAL MINE WARFARE VISION 2010,

“Since most mines are inexpensive and easy to obtain, many potential adversaries possess

a significant mining capability. The complexities of warfare in the littoral regions, the need

for rapid response to crises throughout the world, and the reduction of our force levels in

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to acknowledge Mr. Lee Fry and Mr. Jeff Rish of the Coastal System

Station, Panama City, FL for providing the financial support and guidelines for this

research. I would also like to thank the staff members, faculty, and fellow students who

supported me during my time here at the Naval Postgraduate School; especially, Professor

Tony Healey for his untiring guidance, constant support, and patience during the thesis

process. Additionally, I would like to acknowledge Joung K. Kim who initially coded the

computer program on which this research was based.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 3.1 Program Parameter Settings ... 19
Table 3.2 Experimental Simulation Parameters... 24
Table 3.3 Experimental Results of Varying the Turn Time...................................... 25
Table 4.1 Simulation Parameters for Analysis of Varying Vehicle Speeds 30
Table 4.2 Simulation Results for Various Vehicle Speeds....................................... 30
Table 4.3 Simulation Parameters for the Analysis of Varying Sensor Width............ 32
Table 4.4 Simulation Results for Various Sensor Widths .. 32
Table 4.5 Simulation Parameters for Analysis of Varying Vehicle Spacing.............. 33
Table 4.6 Simulation Results for Various Vehicle Spacing...................................... 33
Table A.1 Example Simulation Parameters.. 80

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 2.1 Typical Layout for a 20 Vehicle Scenario ... 6
Figure 2.2 Minefield Layout .. 8
Figure 2.3 Lawnmower Search Pattern.. 9
Figure 2.4 Swimmer Vehicle Tracks for a 20 Vehicle Simulation............................. 12
Figure 2.5 Logic Flow Chart for Robotic Minesweeping.. 15
Figure 3.1 Vehicle Overlap.. 20
Figure 3.2 Vehicles with 100% Overlap... 23
Figure 3.3 Vehicles with 0% Overlap .. 23
Figure 3.4 Example Vehicle Shift .. 27
Figure 4.1 Simulated Tracks at 2.5 Knots.. 31
Figure 4.2 Simulated Tracks at 5 Knots and 1.5 m Spacing 34
Figure 4.3 Simulated Tracks at 5 Knots and 5 m Spacing .. 35
Figure 4.4 Rapid Sequence of Vehicle Re-tasking.. 36
Figure 4.5 Mine Neutralization During Re-allocation... 36
Figure C.1 Columns for output file pvacrxxx.rst... 82

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A. BACKGROUND .. 1
B. SCOPE OF THIS WORK ... 3

II. CONCEPT ... 5
A. OVERVIEW... 5
B. MINEFIELD .. 7
C. SEARCH PATTERN ... 8
D. VEHICLE DESCRIPTIONS ... 10

1. Supervisor Vehicle .. 11
2. Swimmer Vehicles... 13

E. LOGIC.. 14

III. PROGRAM EVALUATION... 19
A. PARAMETER SETTINGS.. 19
B. PRINCIPLE OF OVERLAP ... 20

1. Sensor Width .. 21
2. Calculation of Overlap ... 22

C. EFFECTS OF VARYING THE TURN TIME 23
D. VEHICLE IDENTIFICATION PROCEDURES................................ 25
E. TRACK RE-ALLOCATION... 26

1. Basis of Re-allocation ... 26
2. Calculation of and usage of ÄX.. 28

IV. RESULTS .. 29
A. EFFECTS OF VARYING THE VEHICLE SPEED........................... 29
B. EFFECTS OF VARYING THE SENSOR WIDTH............................ 31
C. EFFECTS OF VARYING THE VEHICLE INTERVAL................... 33
D. INTERESTING RESULTS ... 35

V. CONCLUSIONS AND RECOMMENDATIONS .. 37
A. CONCLUSION .. 37
B. RECOMMENDATIONS ... 38

APPENDIX A. CODED PROGRAM FILE.. 39

APPENDIX B. MATLAB FILES FOR GRAPHICAL DATA DISPLAY 73

APPENDIX C. USERS GUIDE TO THE PROGRAM .. 77

LIST OF REFERENCES.. 83

INITIAL DISTRIBUTION LIST ... 85

